134 research outputs found

    Asynchronous displays for multi-UV search tasks

    Get PDF
    Synchronous video has long been the preferred mode for controlling remote robots with other modes such as asynchronous control only used when unavoidable as in the case of interplanetary robotics. We identify two basic problems for controlling multiple robots using synchronous displays: operator overload and information fusion. Synchronous displays from multiple robots can easily overwhelm an operator who must search video for targets. If targets are plentiful, the operator will likely miss targets that enter and leave unattended views while dealing with others that were noticed. The related fusion problem arises because robots' multiple fields of view may overlap forcing the operator to reconcile different views from different perspectives and form an awareness of the environment by "piecing them together". We have conducted a series of experiments investigating the suitability of asynchronous displays for multi-UV search. Our first experiments involved static panoramas in which operators selected locations at which robots halted and panned their camera to capture a record of what could be seen from that location. A subsequent experiment investigated the hypothesis that the relative performance of the panoramic display would improve as the number of robots was increased causing greater overload and fusion problems. In a subsequent Image Queue system we used automated path planning and also automated the selection of imagery for presentation by choosing a greedy selection of non-overlapping views. A fourth set of experiments used the SUAVE display, an asynchronous variant of the picture-in-picture technique for video from multiple UAVs. The panoramic displays which addressed only the overload problem led to performance similar to synchronous video while the Image Queue and SUAVE displays which addressed fusion as well led to improved performance on a number of measures. In this paper we will review our experiences in designing and testing asynchronous displays and discuss challenges to their use including tracking dynamic targets. © 2012 by the American Institute of Aeronautics and Astronautics, Inc

    Delayed and time-variant patrolling strategies against attackers with local observation capabilities

    Get PDF
    Surveillance of graph-represented environments is an application of autonomous patrolling robots that received remarkable attention during the last years. In this problem setting, computing a patrolling strategy is a central task to guarantee an effective protection level. Literature provides a vast set of methods where the patrolling strategies explicitly consider the presence of a rational adversary and fully informed attacker, which is characterized by worst-case (for the patroller) observation capabilities. In this work, we consider an attacker that does not have any prior knowledge on the environment and the patrolling strategy. Instead, we assume that the attacker can only access local observations on the vertex potentially under attack. We study the definition of patrolling strategies under the assumption that the attacker, when planning an attack on a particular location, tries to forecast the arrivals of the patroller on that particular location. We model our patrolling strategies with Markov chains where we seek the generation of arrivals that are difficult to forecast. To this end we introduce time-variance in the transition matrix used to determine the patrollers movements on the graph-represented environment

    Task Switching and Single vs. Multiple Alarms for Supervisory Control of Multiple Robots

    Get PDF
    Foraging tasks, such as search and rescue or reconnaissance, in which UVs are either relatively sparse and unlikely to interfere with one another or employ automated path planning, form a broad class of applications in which multiple robots can be controlled sequen-tially in a round-robin fashion. Such human-robot systems can be described as a queuing sys-tem in which the human acts as a server while robots presenting requests for service are the jobs. The possibility of improving system performance through well-known scheduling tech-niques is an immediate consequence. Unfortunately, real human-multirobot systems are more complex often requiring operator monitoring and other ancillary tasks. Improving perfor-mance through scheduling (jobs) under these conditions requires minimizing the effort ex-pended monitoring and directing the operator’s attention to the robot offering the most gain. Two experiments investigating scheduling interventions are described. The first compared a system in which all anomalous robots were alarmed (Open-queue), one in which alarms were presented singly in the order in which they arrived (FIFO) and a Control condition without alarms. The second experiment employed failures of varying difficulty supporting an optimal shortest job first (SJF) policy. SJF, FIFO, and Open-queue conditions were compared. In both experiments performance in directed attention conditions was poorer than predicted. A possi-ble explanation based on effects of volition in task switching is propose

    Highlighting type A RRs as potential regulators of the dkHK1 multi-step phosphorelay pathway in Populus

    Get PDF
    In previous studies, we highlighted a multistep phosphorelay (MSP) system in poplars composed of two hybrid-type Histidine aspartate Kinases, dkHK1a and dkHK1b, which interact with three Histidine Phosphotransfer proteins, dkHPt2, 7, and 9, which in turn interact with six type B Response Regulators. These interactions correspond to the dkHK1a-b/dkHPts/dkRRBs MSP. This MSP is putatively involved in an osmosensing pathway, as dkHK1a-b are orthologous to the Arabidopsis osmosensor AHK1, and able to complement a mutant yeast deleted for its osmosensors. Since type A RRs have been characterized as negative regulators in cytokinin MSP signaling due to their interaction with HPt proteins, we decided in this study to characterize poplar type A RRs and their implication in the MSP. For a global view of this MSP, we isolated 10 poplar type A RR cDNAs, and determined their subcellular localization to check the in silico prediction experimentally. For most of them, the in planta subcellular localization was as predicted, except for three RRAs, for which this experimental approach gave a more precise localization. Interaction studies using yeast two-hybrid and in planta BiFC assays, together with transcript expression analysis in poplar organs led to eight dkRRAs being singled out as partners which could interfere the dkHK1a-b/dkHPts/dkRRBs MSP identified in previous studies. Consequently, the results obtained in this study now provide an exhaustive view of dkHK1a-b partners belonging to a poplar MSP
    • …
    corecore